Combined PGS and PGD for Thalassemia

Matthew Brockman, Bree Hodgson, Kimberly Warren, Melinda Jasper

Conflict of Interest
MB, BH, KW and MJ are employees of RHS Ltd

PGDIS 2017 Valencia, Spain
Why combine PGD with PGS?

Preimplantation Genetic Diagnosis (PGD) and Preimplantation Genetic Screening (PGS) are not routinely combined

PGD unaffected embryos can be aneuploid
 70% of PGD unaffected embryos that failed to implant were aneuploid (Mark Hughes, Genesis Genetics ACMG 2017)

So what are the options to combine PGD and PGS?
Strategies for PGD + PGS

Direct PCR

The region of interest may be amplified during WGA

ADO rate higher than PGD

WGA for PGS

No PGS

WGA + PGD

1 PCR; 2 results

ADO rate equivalent to PGD
DOPlify + PGD

DOPlify WGA
- Proven approach
- Latest generation reagents suited to high resolution NGS
- Optimised and validated for PGS

+ Targeted Sequence Enrichment (TSE)
- RHS patented approach
- Compatible with DOPlify WGA only
- Optimized addition of individual and multiplex primer sets for the specific amplification of single or multiple target regions during WGA
To demonstrate the application of a novel sequence enrichment protocol during WGA using DOPlify for combined PGD and PGS by NGS for β-thalassemia
Common HBB mutations

PCR primer targets

Exon 1 & 2

Exon 3

http://perspectivesinmedicine.cshlp.org/content/3/5/a011700.full
DOPlify standard WGA protocol

Lysis

- Add lysis buffer & enzyme mix
 - *cells only

- Incubate 10 minutes

Amplify 2 hours

WGA

- Add PCR mastermix
DOPlify WGA + TSE protocol

Compatible with routine PGD methods:
- PCR, electrophoresis, Sanger sequencing, NGS
DOPlify PGD + PGS strategies

WGA only

WGA + TSE with primers for Exon 1&2 and Exon 3

Pool WGA + TSE & amplicons 1/20

Exons 1& 2

Exon 3

MiSeq™

40 sample multiplex 2x75bp reads
Ideal outcomes

High throughput MiSeq sample run (48)

• same library prep and NGS workflow for PGS and PGD + PGS

• cost per sample remains competitive

• scalable

Aneuploidy results uncompromised following TSE

Breath of coverage: 100%

Depth of coverage: >30x
Breadth and depth of coverage

Breadth = the proportion of bases in the target sequence that are represented

Depth = the number of times each base is represented
PGS by NGS results

5-cell aliquots
WGA + TSE + Amplicons 1:20
Average 600,000 PGS reads per sample
Amplicon reads were downsampled
Comparison of 3 strategies

40 sample multiplex MiSeq 2x75bp reads

- **WGA only**
 - Avg < 1 reads

- **WGA + TSE**
 - Avg 120 reads

- **WGA + TSE & amplicon pool**
 - Avg 1600 reads
Breadth of Coverage 100%

DNA sequence

-Proportion of amplicon sequenced (%)

<table>
<thead>
<tr>
<th></th>
<th>Exon 1&2</th>
<th>Exon 3</th>
<th>Exon 1&2</th>
<th>Exon 3</th>
<th>Exon 1&2</th>
<th>Exon 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>WGA only</td>
<td>10%</td>
<td>0%</td>
<td>20%</td>
<td>50%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>(n=6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WGA + TSE</td>
<td>10%</td>
<td>0%</td>
<td>20%</td>
<td>50%</td>
<td>80%</td>
<td>100%</td>
</tr>
<tr>
<td>(n=7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WGA + TSE + Amplicon 1:20</td>
<td>10%</td>
<td>0%</td>
<td>20%</td>
<td>50%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>(n=5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WGA: Whole Genome Amplification
TSE: Targeted Enrichment
Amplicon: A specific region of the genome that is amplified for sequencing.
Depth of Coverage >200x

DNA sequence

30x-60x

Depth of Coverage (x)

Mean ± STDEV

HBB

WGA + TSE

WGA + TSE + 1:20 Amplicon
The novel RHS DOPlify PGS + PGD protocol

- Uses a standard low pass PGS NGS protocol
- Multiplexes 48 samples per run and has achieved:
 - Accurate PGS results
 - 100% breadth of coverage of the most common β thalassemia mutations
 - >60x depth of coverage across exons 1, 2 and 3

Advantages:

1. Biopsy
2. WGA
3. 1 NGS sample index per sample

Scalable and economical PGS + PGD